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We investigate two sequences of polynomial operators, H 2n- 2(A 1 ,f; x) and
H 2n- 3(A 2 ,f; x), of degrees 2n - 2 and 2n - 3, respectively, defined by inter­
polatory conditions similar to those of the classical Hermite-Fejer interpolators
H2n- 1(f, x). If H2n- 2(A 1 ,f; x) and H 2n- 3(A 2 ,f; x) are based on the zeros of the
jacobi polynomials p~a,I3)(x), their convergence behaviour is similar to that of
H2n- 1(f, x). If they are based on the zeros of (1 - x 2)Tn _ 2(x), their convergence
behaviour is better, in some sense, than that of H 2n- 1(f, x).

1. INTRODUCTION

Let Xn = (xln ,... , x nn)' 1 ~ Xln > ... > Xnn ~ -1, and Gn = (gIn ,... , gnn)
denote the nth row of two triangular matrices X and G. For simplicity, we
shall often write x" ' gk for Xkn , gkn . Also, set

w(X) == li'n(X) = (x - Xl) ... (X - Xn),

lk(X) - lkn(X) = W(X)/(X - Xk) W'(Xk)'

hk(x) = hkn(x) = (1 - (x - Xk) W"(Xk)) f2(x)
W'(Xk) k ,

hk*(x) - htn(x) = (x - Xk) lk2(X),

and letfE C[-I, 1] be given. The (2n - I)-degree polynomial

n n

H~n-l(f, x) = L I(Xk) hk(x) + L gkhk*(x)
k=l k~l

(1.1)

(1.2)

(1.3)

is the well-known Hermite polynomial based on the nodes X n , with deri­
vatives at the nodes equal to gl ,... , gn' When G is identically zero, (1.3) is
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better known as the Hermite-Fejer polynomial, which we shall simply
denote H 2n- 1(f, x).

The convergence behaviour of the sequence of polynomials (I.3), as n tends
to infinity, has been investigated for a variety of matrices X and G. It is
known, for instance, that when w(x) = p~",.8)(X), where p:,,,,.8)(X) denotes the
nth Jacobi polynomial with ex, f3 > -I, and the vectors Gn are bounded,
the sequence Hfn-l(f, x) converges to f(x) on (-I, I), uniformly on any
closed subinterval [3, 6, 8].

On the other hand, Berman has shown [1,2] that, when w(x) =

(I - x2) Tn_lx), where TN(x) = cos(N arccos x), the Hermite-Fejer poly­
nomials H 2n- 1(f, x) actually diverge on (-I, I) if f(x) = x, I x I, or x 2.

In the light of the above results, it would be interesting to see whether,
by an appropriate choice of the matrix G, it is possible to obtain a sequence of
polynomials that converges to f(x) for every!E C[-1, 1], in both the cases
w(x) = p~",.8)(X) and w(x) = (l - x2) Tn_2(x).

As a partial result in that direction, we construct two polynomial sequences
H 2n- 2(A 1 ,f; x) and H2n- 3(A 2 ,f; x) (Section 2), with the following properties.
If w(x) = p~~.8)(X) (with ex, f3 > -I), then both H2n- 2(A 1 ,f; x) and
H 2n- 3(A2 ,f; x) converge to f(x) on (-1,1), uniformly on every closed
subinterval (Theorem 3.1). If w(x) = (I - x2) Tn_2(x), then the uniform
convergence class of H 2n- 1(f, x) is strictly contained in that of H 2n- 2(A1 ,f; x),
which in turn is strictly contained in that of H2n- 3(A2 ,f; x) (Theorem 7.1).
Such convergence classes are partially characterized in Sections 5 and 6
(Theorems 5.1 and 6.1-6.4).

Let m be an integer less than n, and let Am(z) = L::o a;z' be a polynomial
with positive roots. It has been proved [5, Theorem 2.1] that, for every f (x),
there exists a unique polynomial H(x) = H2n-l-m(Am,f; x) of degree
2n - I - m or less, satisfying the conditions

m

H(Xk) = !(Xk), k = 1,... , n, L a.H'(xt+j) = 0,
,~o

j = 1, ... , n - m. (2.1)

Such a polynomial may be called an averaging Hermite interpolator of f(x),
on account of the conditions on the derivatives. We shall concern ourselves
only with the cases of the polynomials

A1(z) = 1 - z(m = 1), (2.2)

Note that if Ao(z) == I, then H 2n- 1(Ao ,f; x) == H 2n- 1(f, x).
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To find an explicit expression for Hzn-l-m(Am ,f; x) in the two cases (2.2),
let Sn = Xl + .. , + X n , and set

n k
Kn = L w'(x )2 '

k=l k

J * _ ~ 2st> - Xk
n - L. W'(X)2 '

k=l k

(2.3)

(2.4)

THEOREM 2.1. Let hix), hk *(x), k = 1,..., n be as in (1.2). Then

n n

Hzn- 2(A1 ,f; x) = L f(Xk) hk(x) + C L hk*(x),
k=l k=l (2.6)

k = I, ... , n.

THEOREM 2.2. Let hk(x), hk*(x) , k = 1,..., n be as in (1.2). Then

n n

H 2n- a(A 2 ,f; x) = L f(xk ) hk(x) + L (d + ke) hk *(x), (2.7)
k=l k=l

where

k = 1,..., n, (2.8)

and d, e are given by

d = d = -KnFn * + Kn*Fn

- n JnKn* - In*Kn '

As the proof of Theorem 2.1 is similar to that of Theorem 2.2, we shall
prove only the latter.

Proof of Theorem 2.2. By definition, H zn- 3(A 2 ,f; x) satisfies the linear
difference equation

H~n-3(A2 ,f; Xk) - 2H~n-3(A2 ,f; Xk+1) + H~n-3(A2 ,f; XkH) = 0,

whose general solution is given by (2.8), with arbitrary d, e. Since the degree
of H zn- 3(A z ,f; x) cannot exceed 2n - 3, we can determine d, e by requiring
that the coefficients of x zn-l, X2n- 2 in the identity

n n

H 2n-3(A2 , f; x) = L f(Xk) hk(x) + L H~n-3(A2' f; Xk) hk*(x) (2.10)
k=l k=l
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should vanish. It is easy to see from (1.2) that

Therefore, after a briefcalculation, we see that the vanishing of the coefficients
of x 2n-1, X2n- 2 in (2.10) yields

hence, (2.9). Q.E.D.

Remark 2. I. An interesting property of H2n- 2(A 1 ,f; x) and H2n- 3(A2,f; x)
is that, unlike the Hermite-Fejer polynomial H 2n-lf, x), they reproduce
polynomials up to degree 1, as can be seen directly from the defining con­
ditions (2.1). If the nodes Xn are equidistant, then H2n- 3(A 2 ,f; x) reproduces
polynomials up to degree 2.

Remark 2.2. When the nodes Xn are symmetrical (i.e., XnH-k = -Xk'
k = I,... , n), it is easy to see directly from (2.1) that H2n- 1(f, x),
H 2n-lA1 ,f; x), H 2n- 3(A 2,f; x) are all even (odd) if f(x) is even (odd).
Therefore, it is

H 2n-lA1 ,f; x) = H2n- 1(f, x),

H2n- 3(A2 ,f; x) = H 2n- 2(A 1 ,f; x),

if f(x) is even,

if f(x) is odd.

3. CONVERGENCE OF H2n-l-m(Am,f; x) BASED ON THE ROOTS OF p~cx.fJ)(x)

Let IX, f3 > -1, and let w(x) = p~cx.fJ)(x) denote the Jacobi polynomial
of degree n defined by the differential equation

(1 - x 2) w" + (f3 - 0,; - (IX + f3 + 2) x) Wi + n(n + IX + f3 + 1) w = 0,

with initial condition w(1) = (n~cx). From the theory of orthogonal poly­
nomials, we need to recall the relation [9, (8.9.1), p. 236]

arccos Xk = kTrn-1 + D(n-1),

and the quadrature formula [9, (15.3.1), p. 349]

k = 1"00' n, (3.2)

1 nJ g(x)(1 - x)" (1 + xt dx = L /Lkg(Xk) + Rn(g), (3.3)
-1 k~1
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(3.4)

tn = 2<>+13+1r(n + ex + 1) r(n + (3 + 1)/F(n + 1) r(n + ex + (3 + 1),
(3.5)

and Rn ( g) = 0(1) whenever fE C[-1, I].

THEOREM 3.1. If f E C[-I, I] and ex, (3 > -I. then for all a, b
(1 > a > b > -1). we have

H2n- 2(A l ,j; x) -+ j(x),

H2n - 3(A 2 ,j; x) -+ j(x),

uniformly on [b, a],

uniformly on [b, a].

(3.6)

(3.7)

Furthermore, if ex < 0 «(3 < 0), we can take a = 1 (b = -1).

As the proofs for (3.6) and (3.7) are similar, we give only the latter. The
proof depends on the following two lemmas.

LEMMA 3.1. Let tn be given by (3.5), and let w(x) = p~<>.IJ)(x), ex, (3 > -I.
If we set q(x) = (1 - x)<>+1(l + x)S+1, then, as n tends to infinity,

n I 1

in == L -,---()2 = r;/ I q(x) dx + 0(1), (3.8)
k~1 W Xk -1

in' == f ~(Xk )2 = t;;t II q(x) x dx + 0(1), (3.9)
k~1 H Xk -1

n k 1

Kn == L~()2 = n(7Ttn)-1 I q(x) arccos x dx + 0(1), (3.10)
k~1 H x k -1

n k 1

Kn ' =::= I ,,(Xk)2 = n(7Ttn )-l I q(x) x arccos x dx + 0(1). (3.11)
k~l H Xk -1

Proof It is enough to derive (3.8) and (3.10), since (3.9) and (3.11) are
similarly obtained.

(i) To show (3.8), let us take g(x) = 1 - x 2 in the quadrature formula
(3.3). Since g(x) is continuous, (3.3) yields

(3.12)

As by Stirling's asymptotic formula tn -+ 2<>+S+1 (which is not 0), on dividing
(3.12) by tn we get (3.8).
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(ii) To prove (3.10), let us observe that, from (3.2), it follows that
k = mr- I arccos Xk + 0(1). Hence, by (3.8),

The rest follows by taking g(x) = arccos x in (3.3) and repeating the
argument of (i). Q.E.D.

LEMMA 3.2. Let fEC[-I, I] and let I n , I n*, K n , K n*, be given by
(2.3)-(2.5). If 0:, f3 > -I, then

-KnFn* + Kn*Fn = 0(1),

JnFn* - I n*Fn = 0(1).

(JnKn* - I n*Kn)-I = O(n-I).

(3.13)

(3.14)

(3.15)

Proof. We divide the proof into two parts.

(i) To prove (3.13) and (3.14), let us first observe that (3.2) implies

Xk = cos(brn-I + O(n-I» = cos(k7rn-l ) + O(n-I). (3.16)

Therefore, it follows easily that

n n

Sn = L: Xk = L cos(k7rn-l ) + 0(1) = 0(1). (3.17)
k~1 k~1

On using (2.3), (3.8)-(3.11), and (3.17), we obtain easily

I n = 0(1),

K n = O(n),

I n* = 2snJn - I n' = 0(1),

Kn* = 2snKn - Kn' = O(n),
(3.18)

and since I(x) is continuous and Sn = 0(1), I n = 0(1),

From (3.1) it follows that I W"(Xk)jW'(Xk) I ~ C/(1 - Xk2) for some C inde­
pendent of k, n. Therefore, following the argument used to prove Lemma 3.1,
we see that

±I W"(Xk) I ,;:: C ± 1
k~l W'(Xk)3 '" k~1 (1 - Xk2)(W'(Xk»2

= Ct:;/ r (1 - x)'" (1 + x)S dx + 0(1)
-I

= 0(1).
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Therefore, Fn = 0(1), Fn * = 0(1), which, combined with (3.18), yields
(3.13) and (3.14).

(ii) To prove (3.15), let us set

1 1 I1 J11= L
1

q(x) x dx L
1

q(x) arccos x dx - -1 q(x) dx -1 q(x) x arccos x dx.

We can easily see, on account of (2.3)-(2.5) and Lemma 3.1, that

lnKn* - In*Kn = -lnKn' + In' K n = nlj7Ttn
2 + o(n). (3.19)

It is clear from (3.19) that, to prove (3.15), it is enough to show that I =1= O.
But, since q(x) ): 0 and x, arccos x are two nonconstant, monotone functions,
I =1= 0 is a consequence of the so-called Chebyshev inequality in integral
form [7, Theorem 4.3, p. 43]. Q.E.D.

Proof of Theorem 3.1. From (2.6), it follows readily that

k = 1, ... , n,

where dn , en are given by (2.7). Therefore, from Lemma 3.2 it now follows
that

k = 1,... , n. (3.20)

By [9, Theorem 14.6, p. 338], (3.20) implies H 2n-iA2 ,f; x) --+ f(x), uniformly
on every closed subinterval of (-1, 1) (if ex < 0, on every subinterval of the
form [-1, a]; if f3 < 0, on every subinterval of the form [b, 1]). Q.E.D.

4. THE POLYNOMIALS H2n-1-m(Am ,f; x) BASED ON THE ROOTS OF

(1 - x 2)Tn - 2(x)

It is convenient to consider, as the nodes of interpolation, the zeros of
(1 - x 2) Tn(x) rather than those of (1 - x 2) Tn-lx). That is, we consider
the nodes X o , ... , Xn+l given by

xn+1 == X n+l,n+2 = -1,X o == X O•n+2 = 1,

Xk - Xk.n+2 = cos(2k - 1/2n) 7T, k = 1,... , n.
(4.1)

As a consequence of this choice, the degree of the three polynomials
H2n-1-n,(Am ,f; x) (m = 0, 1,2) previously considered will be increased
by 4, and for greater clarity we shall use for them the notations
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Since Tn(x) satisfies the equation

(1 - x 2
) T~ - xTn' + II Tn = 0,

it is easy to see that, if we set w(x) = (1 - x2 ) Tn(x), then

W"(Xk)/W'(Xk) = -3Xk/(l - Xk2),

= ~(2n2 + 1),

and

(W'(Xk»2 = 1/n2(1 - Xk2),

= 1/4,

(4.2)

(4.3)

From the known identity 1 == L~~l (1 - XXk) Tn2(x)/n2(x - Xk)2, we can
easily obtain

1 = ~ i 1 = ~ i 1 = ~ i 1 (4.4)
n2 k~l 1 - Xk n2 k~l 1 + Xk n2 k~l 1 - Xk2 .

Since the points (4.1) are symmetrical, Sn+2 = Xo + ... + Xn+l = 0. It
is then easy to see, on using (4.2)-(4.4) and taking into account the notational
change from n to n + 2, that (2.3)-(2.5) become

(4.5)

n+l k + 1 n + 2
K n+2 == L w'(X )2 = -2- ,

k=O k (4.6)

K* = ~1 -(k + 1) Xk = ~ ~ kXk + ~
n+2 ~ L.. w'(x )2 n2 L.. 1 - X 2 4 '

k~O k k=l k

(4.7)
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If we denote by hk(x), hk *(x), k = 0,... , n + 1 the polynomials (1.2) based
on the points (4.1), then (2.6) is replaced by

n+1 n+1

H 2n+2(A 1 , j; x) = I f(xk) hk(x) + Cn+2 I hk*(x),
k~O k~O

k = 0, ... , n + I.

Also, (2.7) is replaced by

(4.8)

n+1 n+1

H 2n+l(A2 ,f; x) = I f(Xk) hk(x) + L (dn+2 + (k + 1) en+2) hk*(x), (4.9)
k~O k~O

where

k = 0, ... , n + 1, (4.10)

and dn+2 , en+2 are given by

(4.11 )

5. CONVERGENCE OF H 2n +3(f, x)

In this section, we consider the Hermite-Fejer polynomials H 2n+3(f, x)
based on the points (4.1).

Our first theorem completely characterizes the uniform convergence
class of H 2ndf, x), thus adding to the results found earlier by Berman [1, 2].
We recall that H2n+3(f, x) satisfies

k = 0,... , n + 1. (5.1)

THEOREM 5.1. Iff E C[-1, 1], the following three conditions are equivalent:

H 2n+lf, x) -+ f(x), uniformly on [-1, 1], (5.2)

2n2(H2n_ 1(f, ~l) - fel» - H~n-l(f, ~I) = 0(1), (5.3)

--; f feI) - f~Xk) = 0(1). (5.4)
n k~l (I +xk )

Here, (5.3) and (5.4) consist each of two separate conditions while
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(5.6)f.ix) = Hj(x) - j( -x)),

H 2n- 1(f, X) denotes, as before, the Hermite-Fejer polynomial of degree
2n - 1 defined by

H 2n- I (f, x lo) = f(Xlo), H~n-l(f, x lo) = 0, k = 1'00" 11. (5.5)

Proof (i) (5.2) ~ (5.3). Set

hex) = Hj(x) + j( -x)),

so that

(5.7)

by sym-

H2ndf, x) = H 2n+3(f1 , x) + H2n+3(f2, x).

Since H2n+3(f, x) == L~:~j(Xlo) hlo(x) and hn+1-ix) = hlo( -x)
metry of (4.1), it is easy to see that

H2n+3(h, x) = -HH2n+3U; x) + H2n+3(f, -x)),

H2n+3(h, x) = t(H2n+3(f, x) - H 2n+aCf, -x)).

Therefore, it is enough to prove the equivalence of (5.2) and (5.3) when
j(x) = fleX) andj(x) = f2(X). We limit ourselves to the latter case, the proof
of the former being similar.

From (5.5) and (5.7) it is clear that H2n+3(f2 , x) and H 2n- I (f2 , x) are odd.
Therefore, we can write, on account of (5.1) and (5.5),

where Pn , qn depend on j(x) and on 11. Since H 2n- I (f, x) --+ j(x) uniformly
on [-1, 1] by Fejer's result [3], we immediately see from (5.8) that (5.2)
is equivalent to the simultaneous occurrence of Pn --+ 0 and qn --+ O. Evalu­
ating (5.8) and its derivative at x = I we obtain, on simplifying by means of
(5.1),

Pn + qn = f2(1) - H 2n- I (f2, 1),

Pn + 3qn = -2n2(h(l) - H 2n- 1(f2, 1)) - H~n-l(h , I).

Since Pn + qn --+ 0 by Fejer's result, the condition Pn --+ 0, qn --+ 0 is then
equivalent to Pn + 3qn --+ 0, hence, as f2(l) = - h(-1), it is equivalent
to (5.2).

(ii) (5.3) ~ (5.4). Here we assume that j(x) is completely arbitrary.
It is sufficient to prove that

is equivalent to
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as the proof for the point x = -1 is quite similar. Differentiating the known
formula H 2n- 1(f, x) = L.~~d(xk)(l - XXk) Tn2(x)/n2(x - Xk)2 and simpli­
fying by means of Tn(1) = 1, Tn'(l) = °we get

and hence,

2n2(H2n_1(f, 1) - 1(1» - H~n-l(f, 1)

= 2 f 1(1) - ~ f I(xd
k~1 1 - Xk n2 k~1 (1 - Xk)2 .

(5.9)

If f(x) - 1, then H 2n- 1(f, x) - 1 and the left-hand side of (5.9) vanishes.
This yields

(5.10)

Thus (5.9) can be further simplified to

2 I -3 ~ f(1) - j(Xk)
2n (H2n- 1(f, 1) - 1(1» - H 2n- 1(f, 1) = -2 L. (1 _ )2 .

n k~1 Xk

This completes the proof of Theorem 5.1. Q.E.D.

A simpler sufficient condition for H2n+3(f, x) to converge uniformly to
f(x) is given by:

THEOREM 5.2. IfIE C[-1, 1] is differentiable at x =:::1 and

1'(1) = 1'(-1) = 0, (5.11)

then H 2n+3(f, x) -+ f(x) uniformly on [-1,1].

Proof After Theorem 5.1, it is enough to show that (5.11) implies (5.4).
We only consider the case x = 1, the proof for x = -1 being similar. For
arbitrary 0 (0 < 0 < 1), we have

II (J(I) - I(xk»/(I - Xk)21 :os; 1 2:'1 1-"'kl >6 1 + 1 2:'ll-"'kl<;;6 I = /1 + /2'
k~1 (5.12)

Since 1'(1) exits, we immediately obtain

n

/1 :os; (I/o) L 1(J(1) - f(xk»/(l - xk)1 :os; C(n/o),
k~1
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for some C independent of n. Also, as 1 - X k > 0, we see that

Using (4.4) and (5.11) we thus obtain

where £(8) -+ 0 if 8 -+ O. Taking 8 = I (log n and using (5.12) we get (5.4).
Q.E.D.

Remark 5.1. Since

k = 1, ... ,n,
(5.13)

where C1 , C2 are independent of k, n, it is easy to see that, iff E C[ - 1, 1]
has nonzero derivative (finite or not) at x = 1, then

I f (/(l) - f(Xk»((l - x k)21 ;? Can2,
k~l

with Ca independent of n. Hence, by Theorem 5.1, H2n+a(f, x) does not
converge uniformly to f(x). In particular, this happens when f(x) = x,
x, or x2, in agreement with Berman's results [1,2].

Here, we give a partial characterization of the uniform convergence classes
of the averaging Hermite interpolators (4.8) and (4.9).

THEOREM 6.1. If fEC[-I, 1] and its even and odd parts hex), fAx)
defined in (5.6) satisfy

n

(l(n2) L (j~(l) - j~(Xk»)((l - Xk)2 = 0(1),
k~l

n

(lJn2) L (/2(1) - f2(Xk»)JO - Xk)2 = o(n),
k~l

(6.1)

(6.2)

then H 2n+iA1 ,f; x) -+ f(x) uniformly on [-1, 1]. Furthermore, the condition
0(1) cannot be replaced by DO), nor o(n) by O(n).
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THEOREM 6.2. If fEC[-I, I] and its even and odd parts f1(X), f2(X)
defined in (5.6) satisfy

f1(X) is differentiable at x = ~I and

f2(1) - f2(X) = 0((1 - X)1/2),

f1'(I) =f1'(-I) = 0, (6.3)

x -->- 1-, (6.4)

then H 2n+2(A l ,f; x) -->- f(x) uniformly on [-I, I]. Furthermore, the condition
0«(1 - X)1/2) cannot be replaced by 0«(1 - X)1/2).

After Remark 2.2, the two conditions (6.1) and (6.3) follow immediately
from conditions (5.4) of Theorem 5.1 and condition (5.11) of Theorem 5.2.
Similarly, (6.2) follows from condition (6.5) of Theorem -6.3, while (6.4)
follows from condition (6.6) of Theorem 6.4.

THEOREM 6.3. Iff E C[-I, I] satisfies

n

(I/n2) L (/(:':1) - j(xk»/(r-.;,x"l = o(n),
k~l

(6.5)

then H 2n+l(A2 ,f; x) -->- f(x) uniformly on [-1, I]. Furthermore, the condition
o(n) cannot be replaced by O(n).

THEOREM 6.4. If f E C[-I, I] satisfies

j(:+:I) - f(x) = 0«(1 :;:X)1/2), x -->- ~I:;: , (6.6)

then H 2n+l(A2 ,f; x) -->- f(x) uniformly on [-I, I]. Furthermore, the condition
0«(1 :;:X)1/2) cannot be replaced by 0«(I:;:X)1/2).

Note that both (6.5) and (6.6) consists of two separate conditions to hold
simultaneously. The proof depends on the three lemmas below.

LEMMA 6.1. Let hk*(x), k = I, ... , n be the polynomials (1.2) based on
the zeros Xl"'" Xn of Tn(x). Then

n

L hk*(x) = Tn(x) Tn_1(x)/n,
k~l

(6.7)

n

L khk *(x) = 0(1),
k~l

xE[-I,I]. (6.8)

Proof (i) Formula (6.7) is due to Fejer [4, (59), p. 300].
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(ii) From the explicit expression (4.1) of Xl"'" X n , we obtain

k = «n + 1)/2) - (n/17) arcsin Xk , k = 1, ... , n.

Therefore, it follows from (6.7) that (6.8) is equivalent to

n

Six) = I (arcsin x - arcsin Xk) hk *(x) = O(n-l),
Io~l

XE[-I,I]. (6.9)

To prove (6.9), let first observe that, on account of the explicit expression
hk *(x) = (1 - Xk2) Tn2(X)/(X - xd n2, Sn(x) becomes

Sn(x) = ( Tn(x) )2 f arcsin x - arcsin X k (1 _ Xk2). (6.10)
n Io~l x - Xk

The function arcsin x is increasing, odd, convex on [0, 1] and concave on
[-1,0]. It is then easy to see geometrically that, for all x E [0, 1],

o < arcsin x - arcsin X k < 17/2 - arcsin Xk

~ x - Xk ~ 1 - Xk '
k = I, ... ,n.

Using this in (6.10) we obtain, after simplification, the inequalities

n

o < Sn(x) < Tn2(X) n-2 L (17/2 - arcsin Xk)(1 + XIo) < 217/n, (6.11)
k~l

valid on [0, 1]. Similarly, we can see that on [-1,0], the inequalities

n

o < Sn(x) < Tn2(X) n-2 L (17/2 + arcsin xk)(1 - Xk) < 217/n (6.12)
k~l

are valid. Combining (6.11) and (6.12), we obtain (6.9) and thus (6.8). Q.E.D.

LEMMA 6.2. Let cn+2 be as in (4.8) and let h",(x) , hk *(x), k = 1, ... , n be
the polynomials (1.2) based on the zeros of Tn(x). If f E C[-I, 1] is odd and
satisfies (6.5), then

n

Cn +2 L hk*(x) = 0(1),
Io~l

XE[-I,I]. (6.13)

Proof On account of (6.7), it is enough to show that, if f(x) is odd, then
(6.5) implies Cn+2 = o(n). From (4.5) and (4.7), it follows that Cn+2 =
2Fn+2(f)/3. Sincef(x) is odd and the points Xl'"'' x n of (4.1) are symmetrical,
we have
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From (4.4) and (5.10), it follows that
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(6.15)

Now, multiply (6.15) by 3(f(1) - f( -1»/4 = 3f(1)/2, (6.14) by -3, and
add together. Recalling that Cn+2 = 2Fn+2(f)/3, we then have

_ I ~ f(l) - f(Xk)
Cn +2 - n2 L, (I _ X)2 .

",~1 k

It is now clear that (6.5) implies cn +2 = o(n), and hence, (6.13).

(6.16)

Q.E.D.

LEMMA 6.3. Let dn +2 , en+2 be as in (4.11) and let hix), hk*(x), k = 1,... , n
be the polynomials (1.2) based on the zeros of Tn(x). If f E C[-1, 1] is even
and satisfies (6.5), then

n

L (dn +2 + (k + I) en+2) hk *(x) = 0(1),
"~1

xE[-l,l]. (6.17)

Proof On account of (6.7) and (6.8), it is enough to show that, if f(x)
is even, then (6.5) implies dn + 2 = o(n) and en +2 = 0(1). As the points Xl' .." Xn

are symmetrical and f(x) is even, Cn+2 vanishes, hence, the two conditions
we have to prove reduce to en+2 = 0(1).

Since f(x) is even and continuous, it follows from (4.4) and (4.7) that

* 1 ~ f(Xk)
Fn+2(f) = n2 "'::1 1 _ X

k2 - Fn+2(xf) = 0(1) - Fn+2(xf).

Replacing in (6.16) the functionf(x) by xf(x) and using (4.4), we get

F (xf) = ~ i f(1) - xd(xk)
n+2 2n2 "~1 (1 - Xk)2

= ~ i f(1) - f(Xk) _ ~ i (1 - xk)f(x,,)
2n2 "~1 (1 - X,,)2 2n2 k~l (1 - Xk)2

= ~ f f(I) - f(x:) + 0(1).
2n "~1 (1 - x k )

It is clear, therefore, that (6.5) implies Fn+lxf) = o(n). Now, from (5.13),
we can see that

Thus, on account of (4.6) and (4.11), (6.5) implies en+2 = 0(1). Q.E.D.
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Proof of Theorem 6.3. We prove the two parts of the theorem separately.

(i) Let hk(x), hk*(x), k = 1, ... , n be the polynomials (1.2) based on
the zeros Xl"'" Xn of Tn(x), and set

n n

Hin-l(f, x) = L f(x k) hk(x) + L H;n+I(A 2 ,f, Xk) hk*(x). (6.18)
k~l k~l

From Fejer's result [3], it follows that since f E C[ -1, 1],

n

Hin-l(f, x) = f(x) + L H;n+1(A 2 ,!; Xk) h/(x) + 0(1),
k~l

XE[-I,I].
(6.19)

Since Hin-l(f, x) and H 2n+l(A2 ,I; x), as well as their derivatives, coincide
at Xl'"'' Xn , we can write for some Pn , qn ,

As H 2n+l(A2 ,f; :::1) = fel), on setting x = :+:1, we get

Pn = t(f(1) +f(-I» - !(Hin-l(f, 1) + Hin-l(f, -1),
(6.21)

It is clear, therefore, from (6.19)-(6.21), that H 2n+1(A2 ,f; x) -+ f(x) uni­
formly on [-1, 1] if

n

I H~n+1(A2 ,f; Xk) hk *(x) = 0(1),
k=l

XE[-l,l]. (6.22)

If we now separatef(x) into its even and odd parts and take (4.8) and (4.11)
into account, we find that (6.22) follows from Lemmas 6.2 and 6.3.

(ii) To prove the second half of Theorem 6.3, we show that
f(x) = x(1 - X2)1/2 satisfies

while H 2n+l(A2 ,I; x) fails to converge to f(x) uniformly on [-1, 1].

To see (6.23), let us observe first that, since f(x) is odd, the two sums in
(6.23) are equal and, on account of (6.16) and Remark 2.2, their common
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value is Cn+2 • given by (4.8). Using the symmetry of Xl •... ' x n and the
inequalities (5.13). we see that

_ J..- ~ f(1) - f(xk) 1 [nI2] xk(1 - Xk2)1/2
cn +2 - n2 L, (1 - X )2 = n2 L (l - x )2

k~l • k k~l k

(6.24)

for some constant C > O. On the other hand, it is clear that, for some other
constant c > O.

(6.25)

To see that H 2n+l(A2 ,f; x) does not converge to f(x) uniformly on [-1, 1].
let us first note that, on account of (6.7). (6.19) may be written

XE[-l.l]. (6.26)

Replacing (6.26) into (6.21). we get Pn = 0(1). qn = n-I cn+2 + 0(1). Using
this and (6.26) to simplify (6.20). we obtain

H 2n+l(A2 ,f; x) - f(x) = n-Icn+2(xTn2(x) - Tn(x) Tn_l(x)) + 0(1).

x E [-1, 1].

Setting x = cos t. it is easy to see that

It is clear that, on any subinterval I of [-1, 1]. we have, at least for all
suitably large n. sUPll Un(x)! ;;::, t SUPl I sin t I. Thus. it follows from (6.25)
that n-I cn+2 1 Un(x) I ;;::, C > O. for some constant C. Therefore. H 2n+l(A2,f; x)
fails to converge to f(x) uniformly on any subinterval I of [-1, 1]. Q.E.D.

Proof of Theorem 6.4. The second part has just been established in
part (ii) above.

To prove the first part, we show that (6.6) implies (6.5). To see this. let
observe that. much as in the proof of Theorem 5.2. we have. for arbitrary 0
(0 < 0 < 1).

If (f(l) - f(xk))/(1 - Xk)2!
k~l
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On account of (6.6), it is easy to see that

IO/n2)tl (J(I) - f(Xk»/O - Xk )21

~ (Cjn82) + E(8) max (1 - Xk)-1/2
II-xk l<;;6

= (Cjn82
) + (E(8)/(1 - X1)1/2) ~ (Cjn82) + C1nE(8),

where E(8) -- 0 if 8 -- O. Taking 8 = (log nfn)1/2, we obtain one half of
(6.5). The other half can be similarly obtained. Q.E.D.

7. UNIFORM CONVERGENCE CLASSES OF H 2n+3-",(Am ,f; x)

Let H~n+3 denote the uniform convergence class of H 2n+3Cf, x), i.e., let

H~n+3 = {IE C[-I, I]: H 2n+3U; x) -- f(x) uniformly on [-I, In,

and let H~n+2(Al) and H~n+l(A2) be analogously defined.

THEOREM 7.1. We have, with strict inclusion,

H~n+3 C H~n+2(Al) C H~n+1(A2)' (7.1)

Proof It is easy to see, on account of Remark 2.2, that if f(x) is even
(odd), that f E H~n+3 implies f E H~n+2(Al)' If f(x) is arbitrary, we arrive at
the same conclusion by separatingf(x) into its even and odd parts and using
linearity. This establishes one half of (7.1); the other half is similarly obtained.

To see that the inclusions in (7.1) are strict, it is enough to exhibit functions
that are in one class but not in the other.

(i) H~n+3 =1= H~n+2(Al)' In fact, f(x) = x is in H~n+lAl) on account
of Theorem 6.2, but not in H~n+3 by Remark 5.1 (see also [1,2]).

(ii) H~n+2(Al) =1= H~n+l(A2)' Consider f(x) = x 2. Since f(x) is even,
we have H 2n+2(Al ,f; x) = H 2n+3Cf, x) on account of Remark 2.2. Since
1'(1) = 1, we see from Remark 5.1 (or from [1,2]) that H 2n+3U; x) fails
to converge uniformly to f(x) on [-I, 1]. Therefore, f(x) does not belong
to H~n+2(Al)' However, on account of Theorem 6.4, f(x) is obviously in
H~n+1(A2)' Q.E.D.

8. CONCLUSIONS

It is apparent, from Theorem 3.1 and Theorem 7.1, that the Hermite­
Fejer operator H 2n- 1(f, x) and the averaging Hermite interpolators
H 2n- 2(A 1 ,f; x) and H 2n- 3(A 2 ,f; x) yield three sequences of polynomial
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operators of increasing power, at least in the cases when w(x) = p~",.(3)(X)

and w(x) = (l - x2) Tn _ 2(x). It would be interesting to see whether or not
the averaging Hermite interpolators H2n-l-m(Am ,J; x) with m ;): 3 give yet
more powerful operators. For instance, one may consider the operator
H 2n- 5(A4 ,J; x), where Aiz) = (l - Z)4, and ask whether the uniform
convergence classes in the cases w(x) = p~",.(3)(X) and w(x) = (l - x2)Tn _ 2(x)
are the full C[ - L 1].
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